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1.Dynamic RF Mapping



Dynamic RF Mapping

® The RF map can be described asf(x,y,z,t) -
with (x,y,z) ¢ R?
® This describes the average RF power at a point in

3-dimensional space over time within a bounded
space.

® For simplicity, we study the RF map at one
elevation z,. Thus, we have f(x,y, zy, t) =

fx,y,0).
® How can we accurately estimate the shape of
the surface: {(x, v, f (x, 5, t0))|(x, ) € R?}?
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Why DRFM?

® It can be helpful for many reasons:

® Wireless network coverage enhancement / studies, interference management,
spectrum policing, spectrum sharing, and others

® Arough estimate of the RF map is still very useful for many applications

® DRFM will be most useful to use between systems that cannot communicate



Methods for RF Mapping

Use propagation models
® Model-fitting (transmitter location(s))
® Ray-tracing (physical terrain)
Interpolation

® Using sample points alone to estimate the RF map (continuity, second-order stationary)

Dynamic implies a rapidly changing RF map. This change could be due to movement
emitters, changes in environment, or movement in the sensors used in RF mapping.

For a dynamic environment, interpolation methods are more suitable



Building RF Map

Kriging (statistical approach) [3]

® Used widely in geostatistical modeling

® Assumes second-order stationarity, subject to the validity of the semi-variogram
Inverse Distance Weighting [2]

® Interpolates points as a weighted average of nearby samples
Thin-plate splines [1]

® Polynomial fitting of the data-points

Discrete Cosine Transform



Aliasing in DRFM

There still a considerable amount of Error even though we are using good
interpolation techniques. Why?

Answer is because we are doing sampling, but we could not satisfy Nyquist
Nyquist Rate: f, = 2f _,
Sampling distance, not sampling period.

The sampling distance is related to the level of detail. High details mean
smaller sampling distance.

Sampling Distance
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Previous Work

® The most successful attempt at minimizing the number of sampling points
in a Rayleigh fading environment uses compressive sensing.*

® Still requires nearly the same number of sampling points to satisfy the
Nyquist condition — suggesting an RF map is a low-pass type signal.

® |Isit then possible to overcome this?

*Y. Mostofi, “Compressive Cooperative Sensing and Mapping in Mobile
Networks,” IEEE Transactions on Mobile Computing, vol. 10, no. 12,
pp. 1769-1784, Dec. 2011.



2. Quantifying the Aliasing Effect




Aliasing € -2 Bandwidth

Signal Propagation is affected by three main factors:

Shadowing

(Medium
Scale)

Path Loss
(Large Scale)

High variations contribute to a higher bandwidth

Received Signal Strength (dBm)
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Bandwidth here is in the wavenumber sense, not in
the Hertz sense.

® Time € Hertz secN1

® Distance € Wavenumber m”-1

What contributes to aliasing?

1m 1m0 Ry Signal with Large, Medium, and Small Scale Effects
--| = m m Ry Signal with Large and Medium Scale Effects
= Ry Signal with Large Scale Effects Only
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What contributes to aliasing?
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Implications

® Fading relates to bandwidth which relates to aliasing and error in map
estimation

® To reduce the aliasing effect DRFM methods should focus on mitigating the
effects of small scale fading

® One way this can be accomplished is by applying local power estimation
averaging



3. Aliasing Reduction by Local Power
Estimation




Approach

® Do not estimate the RF map that includes fading

® We want a good idea of what the RF map looks like in a given area

® Estimate the RF map as if fading was not there



| ocal Power Estimation
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Local Power Estimation (cont’d)

® Estimate the local average power using the local samples
® Take measurements from several ‘local’ samples

® Combine them through averaging or through another statistical estimator

® Interpolate from local power estimates
® ‘Global’ samples will be interpolated using DCT to build the final DRFM.

® Itis worth mentioning, that the ‘local’ samples will be subject to correlation



4. Results




RF Map Generation

® Step 1. Two Ideal maps were generated: one with fading other without fading.
® Path loss exponent of 2
® Shadowing decorrelation distance of 5o meter distance and 6 dB standard deviation
® Small-scale fading introduced by Rayleigh distribution at each point

® Step 2: Rayleigh fading at each point is averaged to generate global samples

® Oranoptimal estimator for a Rayleigh distribution is used:

(N — D)'VaT

2I'(N +.5)




Estimation Error

® Step 3. The two maps were resampled using an arbitrary sampling density to
simulate measuring the RF map at a given point

® Step 4: These measured points were interpolated using DCT to the size of
the original RF map for a point-by-point difference



Evaluation

® Two Metrics: Ideal Map Estimated Map

® Ability of the proposed method to
approximate the ideal map without
fading (Error B)

NoFading Error A

Fading Error:
Error A- Error B

® Additional estimation error as a result Error B

of fading (Error A — Error B)

® Trade-off Analysis Fading

® View the effect of correlation and the
number of antennas on each metric Error A: Interpolation Error
Error B: Interpolation and Fading Error.




Error B

# of Global Samples = 16 # of Global Samples = 100

® Low Density (4x4 grid of 16 samples) f
® Reduction from 8 dB to 5.5 dB with 3 10 |
local samples 5 4
® High Density (10x10 grid) g 8
® Reduction from 8 dB to 4.5 dB with 3 0_% 7 ‘
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Fading Error

# of Global Samples = 16 # of Global Samples = 2500

12

® Low Density (4x4 grid of 16 samples) 1

* Reduction from 4 dB to 3 dB with 3local ™ 10
samples 9 9
® High Density (10x10 grid) = i | I
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4
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Mitigation of Aliasing by Local Averaging

RMSE [dB]
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Conclusions

Fading contribution to DRFM maps increases estimation error.
Estimating DRFM maps using global points is not enough.

Local power averaging reduce fading contribution and increase estimation
accuracy.

Correlation between local sampling points increase estimation error.
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