
Decoding of DVB-T2 LDPC Codes on a
TILE Processor: Optimisations and

Performance Comparisons

Sudeep Kanur1, Stefan Grönroos2,1, Kristian Nybom1,
Jerker Björkqvist1, and Johan Lilius1,2

1Åbo Akademi University, Turku, Finland.
2TUCS- Turku Centre for Computer Science, Turku,

Finland

12.3.2014Åbo Akademi University | Domkyrkotorget 3 | 20500 Åbo | Finland 1

Background

 This paper is part of a series of papers
 2010: Measured complexity of the signal processing

blocks of DVB-T2 standard
– Conclusion: LDPC FEC decoding is very computationally demanding

 2011-2012: Presented a real-time capable LDPC
decoder on a GPU, and a fast decoder on a desktop
Intel CPU

 2013: Measured the performance of LDPC decoding
on multi-core ARM Cortex-A9 processor

 Now: Analysis of LDPC decoding on a Tilera TilePro
64-core tile processor

12.3.2014Åbo Akademi University | Domkyrkotorget 3 | 20500 Åbo | Finland 2

Introduction

 LDPC codes are extensively used in
second generation Digital Video
Broadcasting standards for forward error
correcting schemes

 Decoding of LDPC codes is a NP hard
problem

 Iterative decoding scheme is common
 Multiple code rates + Codeword lengths of

16200 bits & 64800 bits further complicate
decoding problem

12.3.2014Åbo Akademi University | Domkyrkotorget 3 | 20500 Åbo | Finland 3

Low Density Parity Check codes

 LDPC code of length n bits consists of k bits of
information & n − k bits of redundancy called parity bits.
– Code rate: k/n

 Relationship between information & parity bits is linear
given by matrix called parity-check matrix

 Parity-check matrix can be represented as bipartite
graph – Tanner graph

 Tanner graphs help us understand decoding algorithm
12.3.2014Åbo Akademi University | Domkyrkotorget 3 | 20500 Åbo | Finland 4

Decoding Algorithm (Min Sum)

12.3.2014Åbo Akademi University | Domkyrkotorget 3 | 20500 Åbo | Finland 5

Four step iterative algorithm, for iteration j
1. Initialisation – Each variable node v sends the message

2. Check node update – Each check node c sends the message

3. Variable node update – Each variable node v sends the message

4. Decision – Quantize xv such that xv = 1if Lv(xv) < 0, and xv = 0 otherwise.
If H.xT= 0, x is a valid codeword and the decoder outputs x. Otherwise go
to step 2.

Implementation I – Baseline method

 Straightforward implementation of min-sum algorithm
 Messages are stored in an array and are indexed from

check node’s perspective. There are as many messages
as there are edges

 Hence from variable node’s perspective its results in
irregular memory access

12.3.2014Åbo Akademi University | Domkyrkotorget 3 | 20500 Åbo | Finland 6

Implementation II – Strand Method

12.3.2014Åbo Akademi University | Domkyrkotorget 3 | 20500 Åbo | Finland 7

 This methodology behind Strand implementation is
influenced by [1].

 Utilizes block-circulant nature of H matrix defined by
standard

 Grouped by 360 nodes, with each diagonal (strands) given
by

 Where j = 1 … 360, q = 1 …. Q, Q = rate dependent
constant defined in standard

[1] A.Jimenez-Pacheco and O.Dabeer, “A novel conflict free memory and processor architecture for DVB-T2 LDPC decoding”,
in Ultra Modern Telecommunications and Control Systems Workshops (ICUMT), 2011 3rd International Congress on, 2011.

• (32bit, 3 instruction wide integer
VLIW engine with instruction
fetch unit, execution units,
memory management unit incl
TLBs, 64 entry register file, two
level cache) x 64 connected in
2D mesh

• Cache coherent shared memory
maintained by hardware

• 4 DDR2 RAM with 64 bit
interfaces and operates in
striped memory configuration

• Has DMA engine & supports
vector operations

• C/C++ applications with pthread
library support

• SMP Linux run in Zero
Overhead Linux Mode – one
thread/tile & no interrupt
overhead.

12.3.2014Åbo Akademi University | Domkyrkotorget 3 | 20500 Åbo | Finland 8

TILEPRO64 Processor

Experimental Setup (1/2)

 Throughput rate is product of performance per tile and
scaling across multiple tiles
– 100 codewords are decoded & average taken

 Thread pools used and are pinned to tiles starting from 0.
 Throughput rates measured for worst case performance,

i.e. for 30 iterations
 Feedback based optimization used to decrease code

footprint, i.e. improve I-cache hit ratio
 Hash for home strategy enables fetching data from tiles of

other caches (acts as L3 cache)
 Data structures aligned to TLB boundaries

12.3.2014Åbo Akademi University | Domkyrkotorget 3 | 20500 Åbo | Finland 9

Experimental Setup (2/2)
 Data & task parallelism used. Best strategy decided by 4

experiments. Code rates 4/5, 1/2 characterized by
32000x64800 and 12960x64800 used.
1. Pure data parallelism
2. Pure task parallelism. 360 nodes grouped together
3. Data & task parallelism. 2 level thread pools in blocking mode. First

level data parallel, second level task parallel. When no threads are
available in second level, first level waits.

4. Data & task parallelism. 2 level thread pools in non-blocking mode.
Same as above. But when no threads are available in second level, first
level continues.

12.3.2014Åbo Akademi University | Domkyrkotorget 3 | 20500 Åbo | Finland 10

Experiment & Results (1/2)
• Data parallel only
• Maximum Throughput of 5
• Bumps are seen as distance

from RAM decreases.
• Memory bound

• Task parallel only
• Worst performance of 5
• No gain in performance

beyond a certain point
• Irregular memory access

stalls the processors

12.3.2014Åbo Akademi University | Domkyrkotorget 3 | 20500 Åbo | Finland 11

Experiments & Results (2/2)
• Similar to task parallel

execution
• Inverse relation between

data tiles & task parallel tiles,
only peak point shifts. Curve
largely remains same

• Best of both worlds
• Almost linear increase
• Performance still less than 1st

Exp
• No bumps, tiles are

efficiently used

12.3.2014Åbo Akademi University | Domkyrkotorget 3 | 20500 Åbo | Finland 12

Summary (1/2)

 Max throughput of 1.09 Mbps for rate ½ and
970 kbps for rate 4/5
– In data parallel only scenario

 Though non-real time, some insights were
obtained about scalability on NoC platforms

 Strand method performs better to Baseline
 The trend in Exp 4 shows further scalability

with introduction of cores
 Irregular Memory accesses still a problem

12.3.2014Åbo Akademi University | Domkyrkotorget 3 | 20500 Åbo | Finland 13

Summary (2/2)

 Implementation is still far from being
complete.

 Optimizations such as vector processing,
efficient utilization of DMA engine is left
out.

 Throughput per watt is still to be
measured

12.3.2014Åbo Akademi University | Domkyrkotorget 3 | 20500 Åbo | Finland 14

THANK YOU!

12.3.2014Åbo Akademi University | Domkyrkotorget 3 | 20500 Åbo | Finland 15

Sudeep Kanur1, Stefan Gro ̈nroos2,1, Kristian Nybom1, Jerker Bjo ̈rkqvist1,
and Johan Lilius1,2

1Åbo Akademi University, Turku, Finland.
2TUCS- Turku Centre for Computer Science, Turku, Finland
Email: firstname.lastname@abo.fi

References used in presentation
1. A.Jimenez-Pacheco and O.Dabeer, “A novel

conflict free memory and processor architecture
for DVB-T2 LDPC decoding”, in Ultra Modern
Telecommunications and Control Systems
Workshops (ICUMT), 2011 3rd International
Congress on, 2011, pp.1-7

12.3.2014Åbo Akademi University | Domkyrkotorget 3 | 20500 Åbo | Finland 16

Introduction (2/2)

 FPGA & ASICs provide low power, real
time solution but lack programmability

 CPU+GPU also achieve real time
throughputs & provide programmability but
with high power consumption

 Low-power Multicore processors
provide middle ground

12.3.2014Åbo Akademi University | Domkyrkotorget 3 | 20500 Åbo | Finland 17

Experiments & Results (3/3)
• Grouping provides no noticeable advantage for Baseline method
• Its irrespective of number of tiles present for data parallelism &

task parallelism

12.3.2014Åbo Akademi University | Domkyrkotorget 3 | 20500 Åbo | Finland 18

Purely data parallel

Data & task parallel – non
blocking with ratio 1:1

